Discovery of 3,5-Dimethyl-4-Sulfonyl-1 H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability

J Med Chem. 2021 Aug 12;64(15):11330-11353. doi: 10.1021/acs.jmedchem.1c00682. Epub 2021 Aug 3.

Abstract

Myeloid cell leukemia 1 (Mcl-1) protein is a key negative regulator of apoptosis, and developing Mcl-1 inhibitors has been an attractive strategy for cancer therapy. Herein, we describe the rational design, synthesis, and structure-activity relationship study of 3,5-dimethyl-4-sulfonyl-1H-pyrrole-based compounds as Mcl-1 inhibitors. Stepwise optimizations of hit compound 11 with primary Mcl-1 inhibition (52%@30 μM) led to the discovery of the most potent compound 40 with high affinity (Kd = 0.23 nM) and superior selectivity over other Bcl-2 family proteins (>40,000 folds). Mechanistic studies revealed that 40 could activate the apoptosis signal pathway in an Mcl-1-dependent manner. 40 exhibited favorable physicochemical properties and pharmacokinetic profiles (F% = 41.3%). Furthermore, oral administration of 40 was well tolerated to effectively inhibit tumor growth (T/C = 37.3%) in MV4-11 xenograft models. Collectively, these findings implicate that compound 40 is a promising antitumor agent that deserves further preclinical evaluations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Biological Availability
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Drug Screening Assays, Antitumor
  • Humans
  • Mice
  • Molecular Structure
  • Myeloid Cell Leukemia Sequence 1 Protein / antagonists & inhibitors*
  • Myeloid Cell Leukemia Sequence 1 Protein / metabolism
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Pyrroles / administration & dosage
  • Pyrroles / chemistry
  • Pyrroles / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • MCL1 protein, human
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Pyrroles